

IP Datagram 1

CIS 331: Network Introduction Lehman College, City University of New York Fall 2013

Given that a frame is formatted as follows:

Destination Hardware Address	Source Hardware Address	Frame Type	Frame Data	
6 Bytes	6 Bytes	2 Bytes	46 - 1500 Bytes	

And given that an IP datagram is formatted as follows:

Byte	0	1		2	3						
bit	0 1 2 3 4 5 6 7	8 9 10 11 12 13 14 15	16 17 18	19 20 21 22 23	24 25 26 27 28 29 30 31						
0	Version Header Length	Type Of Service	Total Length								
4	Ide	ntification	Flags	Fragment Offset							
8	TTL	Туре	Header Checksum								
12	Source IP Address										
16	Destination IP Address										
	IP Options (May Be Omitted) Padding										
20	IP Payload Data										

And given that a UDP datagram is formatted as follows:

Byte	0	1	2	3						
bit	0 1 2 3 4 5 6 7	8 9 10 11 12 13 14 15	16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31							
0	UDP	Source Port	UDP Destination Port							
4	UDP M	essage Length	UDP Checksum							
20	UDP Payload Data									

And given the following frame with an encapsulated IP datagram:

2B	5B	D6	EB	55	64	CA	36	FA	27	BE	20	08	00	45	05
00	72	7A	90	24	DA	7E	5B	38	12	7D	0D	97	16	C4	AB
51	0F	03	A1	60	53	FD	A4	D0	7E	84	50	CF	EE	7B	BB
55	28	51	02	EA	99	FE	11	5E	96	BC	25	48	3F	5A	4D
97	D1	9D	CA	28	E5	AF	84	D2	A7	04	96	4 D	3F	7C	D2
4A	7B	94	D3	35	C4	97	36	BF	FF	9A	A9	3B	43	29	67
6E	73	71	0F	45	92	41	CF	7F	D0	60	CA	0 D	99	8A	80
A2	48	D6	CA	02	FF	ED	78	E5	FC	2A	6E	F3	42	C2	1C

- 1. Find the source hardware address.
- 2. Find the destination hardware address.
- 3. What type of frame is this?
- 4. What Flag(s) are set?
- 5. What is the fragment offset?
- 6. What is the TTL count?
- 7. What is the Header Checksum?
- 8. If the header includes no options or padding, what are the first five bytes of the datagram data?
- 9. Find the destination IP address.

- 10. What class is the destination IP address?
- 11. What is the network ID in the destination address?
- 12. What is the host ID in the destination address?
- 13. Write the destination IP address in dotted decimal notation.
- 14. Find the source IP address.
- 15. What class is the source IP address?
- 16. What is the network ID in the source address?
- 17. What is the host ID in the source address?
- 18. Write the source IP address in dotted decimal notation.
- 19. Can this message be delivered directly by the source to the destination, or will it require routers to handle the message. Explain.
- 20. What is the UDP source port?
- 21. What is the UDP destination port?
- 22. What is the UDP message length?
- 23. What is the UDP checksum?